
1 INTRODUCTION 
Lifelines are large, geographically-distributed sys-

tems such as transportation networks that are essen-

tial support systems for any society. In the past, 

events such as the 1989 Loma Prieta earthquake and 

the 1994 Northridge earthquake have exposed the 

seismic vulnerability of various lifelines. For in-

stance, the Northridge earthquake caused over $1.5 

billion in business interruption losses ascribed to 

transportation network damage (Chang 2003). The 

city of Los Angeles suffered a power blackout and 

$75 million of power-outage related losses as a re-

sult of the earthquake (Kim et al. 2007). Therefore, it 

is important to proactively assess and mitigate the 

seismic risk of lifelines. Traditionally, probabilistic 

seismic hazard analysis (PSHA) combined with the 

analytical PEER loss analysis framework has been 

used to estimate the hazard at a single site and to as-

sess probable losses to the structure at the site using 

the estimated hazard (McGuire 2007). The site ha-

zard is obtained using ground-motion models, which 

predict median ground-motion intensities as well as 

dispersion of the intensities about the median values 

(e.g., Boore & Atkinson 2008). The PEER metho-

dology cannot, however, be used for lifeline risk as-

sessment, since lifeline risk assessment is based on a 

large vector of ground-motion intensities (intensities 

at all lifeline component locations), and because the 

link between the ground motions at the sites and the 

performance of the lifeline is usually not available in 

closed form. Further, while obtaining joint hazard 

predictions (i.e., prediction of a vector of intensi-

ties), it is important to model the spatial correlation 

between the ground-motion intensities at various 

sites in order to accurately assess the seismic risk 

(Park et al. 2007). As a result of these complexities, 

many past research works use simulation-based ap-

proaches instead of analytical approaches for lifeline 

risk assessment (e.g., Crowley & Bommer 2006, Ki-

remidjian et al. 2007, Shiraki et al. 2007). One sim-

ple simulation-based approach involves studying the 

performance of lifelines under those scenario earth-

quakes that are assumed to dominate the hazard in 

the region of interest (e.g., Adachi & Ellingwood, 

2008). While this approach is less computationally 

demanding, it does not capture the uncertainties in 

the seismic hazard the way a PSHA-based frame-

work would. A more rigorous approach uses Monte 

Carlo simulation (MCS) to probabilistically generate 

ground-motion fields, considering all possible earth-

quake scenarios that could occur in the region, and 

then use these for the risk assessment. The metho-

dology used for generating ground-motion fields is 

based on a form of existing ground-motion models, 

which is described below. We model ground motion 

at a site as 
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where ijY  denotes the ground-motion parameter of  

interest (e.g., Sa(T), the spectral acceleration at pe-

riod T) at site i during earthquake j; ijY  denotes  the 

predicted (by the ground-motion model) median 

ground-motion intensity (which depends on parame-

ters such as magnitude, distance, period and local-

site conditions); ijε  denotes the intra-event residual, 

which is a random variable with zero mean and 

standard deviation ijσ ; and jη  denotes the inter-

event residual, which is a random variable with zero 

mean and standard deviation jτ . The standard devia-

tions, ijσ  and jτ , are estimated as part of the 

ground-motion model. 

Crowley & Bommer (2006) describe the MCS ap-

proach used to probabilistically sample ground-

motion fields. This approach involves simulating 

earthquakes of different magnitudes on various ac-

tive faults in the region, followed by simulating the 

inter-event and the intra-event residuals at the sites 

of interest for each earthquake. The residuals are 

then combined with the median ground motions in 

accordance with Equation 1 in order to obtain the 

ground motions at all the sites.  

Crowley & Bommer (2006) used the above-

mentioned approach to generate multiple earthquake 

scenarios that were then used for the loss assessment 

of a portfolio of buildings. They found that the re-

sults varied significantly from those obtained using 

other approximate approaches (e.g., using PSHA to 

obtain individual site hazard and loss recurrence 

curves, which are then combined to obtain the over-

all loss recurrence curve). They, however, ignored 

spatial correlations while simulating ground-motion 

fields. Further, they used conventional MCS, which 

is computationally inefficient since it implicitly as-

cribes equal importance to all ground-motion scena-

rios irrespective of their potential impact on the life-

line risk. This is inefficient because large magnitude 

events and above-average ground motions are consi-

derably more important than small magnitude events 

and small ground motions while modeling lifeline 

risks, but these events are infrequently sampled in 

conventional MCS. Kiremidjian et al. (2007) im-

proved the simulation process by preferentially si-

mulating large magnitudes using importance sam-

pling (IS). The residuals, however, were simulated 

using conventional MCS.  

In the literature, there are also non-MCS-based 

approaches such as that of Kang et al. (2008) (ma-

trix-based system reliability approach) and Dueñas-

Osorio et al. (2005) (graph-theory based), which 

have been used for performance assessment of life-

lines. It is, however, difficult to compute exceedence 

curves for many preferred lifeline performance 

measures (e.g., the total travel time in a transporta-

tion network) using non-MCS-based approaches. 

The current research work develops an IS-based 

framework to efficiently simulate magnitudes and 

residuals so as to substantially improve the computa-

tional efficiency of the simulation procedure. The 

correlated ground-motion fields generated using this 

approach are then used for assessing the seismic risk 

of an aggregated form of the San Francisco bay area 

transportation network. The resulting risk estimates 

are shown to be in excellent agreement with those 

obtained using the conventional MCS approach (the 

benchmark method). The overall IS framework is 

shown to be computationally faster than the MCS 

framework by a factor of 100.  

2 SIMULATION OF CORRELATED 
GROUND-MOTION FIELDS 

 
As mentioned previously, simulating correlated 

ground-motion fields involves probabilistically sam-

pling earthquake magnitudes and rupture locations 

(which are required for computing the median 

ground-motion intensities), the inter-event residuals 

and the intra-event residuals (Equation 1). This sec-

tion provides a detailed description of the sampling 

procedure used in the current work. 

2.1  Generating an earthquake catalog 

Let n denote the number of active faults in the region 

of interest and iν  denote the annual recurrence rate 

of earthquakes on fault i. Let fi(m) represent the den-

sity function for earthquake magnitudes on fault i. 

Let f(m) denote the density function of the magni-

tude of any earthquake occurring in the region of in-

terest (i.e., this density function models the distribu-

tion of earthquakes resulting from all faults). 

Typically the distributions fi(m) are known, but f(m) 

will be needed later for this procedure. Using the law 

of total probability, f(m) can be determined as fol-

lows: 
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In the event of an earthquake of magnitude m on a 

random fault, let pi denote the probability that the 

earthquake is due to a rupture on fault i. The pi’s can 

be calculated using Bayes’ theorem as follows: 
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Conventional MCS based on Equations 2 and 3 can 

be used for simulating earthquake magnitudes (using 

f(m)) and rupture locations (using pi to randomly 

sample rupture sources).  

The drawback of simulating magnitudes directly 

using the density f(m), however, is that most simu-

lated magnitudes will be small since small magni-

tude events are considerably more probable than 

large magnitude events (say, greater than 7) (Fig. 

1a). Lifeline losses due to small events are usually 

negligible. Moreover, lifeline losses are often not 

sensitive to minor variations in the small-magnitude 

events. Therefore, it is possible to improve the com-

putational efficiency of the risk assessment process 

without compromising on the accuracy of the esti-

mates by using a simulation procedure that preferen-

tially samples large events (while still ensuring that 

the simulated events are seismically representative). 

This is an application of the importance sampling 

technique, which is used to obtain the properties of a 

probability density function f(m) using samples from 

an alternate probability density function g(m) (Law, 

2007). The function g(m) should be chosen to have a 

high probability of producing samples from the re-

gions of interest (for instance, if g(m) is used to si-

mulate magnitudes, g(m) at large magnitudes (m) 

should be large (e.g., Kiremidjian et al. 2007)). 

In the current work, based on sensitivity analysis, 

the authors choose the alternate sampling density 

function, g(m), to be a truncated inverse-exponential 

distribution, as shown below. 

{ } { }( ) exp ( ) exp ( )min max ming m m m m mλ λ λ= − −   (4) 

where λ  is the parameter of the sampling distribu-
tion, mmin and mmax are the minimum and maximum 

magnitudes of interest respectively. The original and 

the sampling density functions are shown in Figure 

1a. The value of λ  that defines g(m) needs to be 
chosen so that the simulated magnitudes match the 

desirable set of magnitudes. Choosing an optimal λ  
is discussed in a subsequent section. 

2.2 Simulating the intra-event residuals 

The set of intra-event residuals 

( )1 2, ,...,j j djε ε ε=εεεε j  follows a multivariate normal 

distribution (Jayaram & Baker 2008a). The mean of 

εεεε j  is the zero vector of size d (where d is the num-

ber of sites of interest), while the variances of the re-

siduals can be obtained from the ground-motion 

model. The correlation between the residuals at two 

sites is typically a function of the separation between 

the sites, and can be obtained from a spatial correla-

tion model. In this work, the correlation coefficient 

between the residuals at two sites separated by h km 

is computed using the following equation, which 

was calibrated using empirical observations by Jaya-

ram & Baker (2008b, in review). 

( ) ( 3 / 30)h exp hρ = −              (5) 

where the factor 30 controls the rate of decay of spa-

tial correlation and is called the “range” of the corre-

lation model.  

Let f(e) denote the above-mentioned multivariate 

normal distribution. A set of correlated intra-event 

residuals can be simulated from f(e)  by first generat-

ing a set of independent residuals (e.g., using the 

Box-Muller method), and by incorporating the ne-

cessary correlation (using the Choleskey triangle) on 

to the independent residuals (Law 2007). Direct si-

mulation using f(e) (i.e., conventional MCS) will, 

however, result in a large number of near-zero (i.e., 

near-mean) residuals and few realizations from the 

upper and the lower tails. For the purposes of lifeline 

risk assessment, it is often of interest to study the 

upper tail (i.e., the ijε  values that produce the largest 

ground motions). In the current work, this is done 

using IS, where the alternate sampling density g(e) is 

chosen to be a multivariate normal distribution with 

the same variance and correlation structure of f(e), 

Figure 1: Importance sampling density functions for: (a) magnitude and (b) intra-event residual 



but with positive means for the marginal distribu-

tions. In other words, the mean vector of g(e) is no 

longer a zero vector of size d, but the vector (msintra, 

msintra,…, msintra). The standard deviations and corre-

lations of ijε ’s are left unchanged in the sampling 

distribution. Figure 1b shows the marginal original 

and sampling distributions for one particular ijε . It is 

to be noted that this choice of the sampling distribu-

tion results in importance sampling weights (Law 

2007) that are extremely simple and computationally 

efficient to compute. The positive mean of g will en-

sure that the realizations from g will be larger than 

the realizations from f. It is, however, important to 

choose an optimal value of the mean-shift msintra to 

ensure adequate preferential sampling of large εεεε ’s, 
while avoiding sets of extremely large intra-event re-

siduals that will make the scenario ground-motion 

field improbable. The process of selecting an optim-

al value of msintra is described in a subsequent sec-

tion. 

2.3 Simulating the inter-event residual 

The density function of the inter-event residual (η ) 
is as follows: 
( ) ~ (0, )f Nη τ                     (6) 

where ( )f η  denotes the density function of η , 

(0, )N τ  is the univariate normal distribution with 

mean 0 and standard deviation τ  (obtained from the 
ground-motion model). 

The IS procedure for η  is similar to that for εεεε , 

except that the alternate sampling distribution is un-

ivariate normal rather than multivariate normal, and  

has standard deviation τ  and a positive mean msinter. 

3 APPLICATION: SAN FRANCISCO BAY 
AREA TRANSPORTATION NETWORK 

In this section, the San Francisco bay area transpor-

tation network is used to demonstrate the applicabili-

ty of the simulation framework developed in section 

2 for assessing the seismic risk of lifelines. It is in-

tended to show that the seismic risk estimated using 

the IS framework matches with a benchmark esti-

mate of seismic risk obtained using the MCS 

framework. 

3.1 Network data 

The San Francisco bay area transportation network 

data used in the current study were obtained from 

Stergiou & Kiremidjian (2006). Figure 2a shows the 

Metropolitan Transportation Commission (MTC) 

San Francisco bay area highway network, which 

consists of 29,804 links and 10,647 nodes. The net-

work also consists of 1,125 bridges from the five 

counties of the bay area. Stergiou & Kiremidjian 

(2006) classified these bridges based on their struc-

tural properties in accordance with the HAZUS 

(1999) manual. This classification is useful for esti-

mating the structural damage to bridges due to vari-

ous simulated scenario earthquakes. The bay area 

network consists of a total of 1,120 transportation 

analysis zones (TAZ), which are used to predict the 

trip demand in specific geographic areas. The origin-

destination data provided by Stergiou & Kiremidjian 

(2006) were obtained from the 1990 MTC household 

survey. 

This application analyzes the network perfor-

mance under ground-motions generated using both 

IS and MCS. Analyzing the performance of a net-

work as large and comprehensive as the San Fran-

cisco bay area transportation network under scenario 

ground-motions generated, in particular, using MCS 

is extremely computationally intensive. Therefore, in 

the current study, an aggregated representation of the 

bay area network is used for the illustration. The ag-

gregated network consists predominantly of the re-

gion’s freeways and expressways, along with the 

ramps linking the freeways and expressways. The 

nodes are placed at locations where links intersect or 

Figure 2: (a) San Francisco bay area transportation network (b) Aggregated network  (the dots on the 

links represent bridge locations) 



change in characteristics (e.g., change in the number 

of lanes). The aggregated network comprises of 586 

links and 310 nodes (Fig. 2b) (The locations of the 

1,125 bridges are also shown in this figure.) Of the 

310 nodes, 46 nodes are denoted centroidal nodes 

that act as origins and destinations for the traffic. 

3.2 Ground-motion hazard 

In the current study, the San Francisco bay area 

seismicity information is obtained from USGS 

(2003). Ten active faults/ fault segments are consi-

dered in the current work. The characteristic magni-

tude recurrence relationship of Youngs & Coppers-

mith (1985) is used to model fi(m), with upper 

magnitude thresholds specified by the USGS. For 

the purposes of our application, 5.0 is considered to 

be the lower threshold for the magnitudes of interest. 

The ground-motion model of Boore & Atkinson 

(2008) is used to obtain the median ground motions 

and the standard deviations of the residuals needed 

in Equation 1. 

3.3 Transportation network performance measure 

A popular measure of network performance is the to-

tal travel time of passengers in a network (Stergiou 

& Kiremidjian 2006, Shiraki et al. 2007). The total 

travel time (T) can be expressed as follows: 

( )i i i

i links

T x t x
∈

= ∑                (7) 

where xi denotes the traffic flow on link i and ti(xi) 

denotes the travel time of a passenger on link i.  

Travel times on transportation networks are gen-

erally computed using the user-equilibrium principle 

(Beckman et al. 1956), which states that each indi-

vidual user would follow the route that would mi-

nimize his/ her travel time. The travel times under 

equilibrium are obtained using the commonly-used 

solution technique provided by Frank & Wolfe 

(1956). 

3.4 Post-earthquake network performance 

 

This section describes the process of determining 

the performance of a transportation network imme-

diately after an earthquake. In the current work, sim-

plified models of transportation systems are adopted 

for purposes of demonstrating the feasibility of the 

proposed IS framework. It is to be noted that more 

realistic network models can be used within the pro-

posed framework, if desired. 

Research works such as Kiremidjian et al. (2003) 

and Cho et al. (2001) focus on a comprehensive 

treatment of post-earthquake changes in travel de-

mands, which will affect the travel times in the net-

work. The current work, however, assumes for sim-

plicity that the post-earthquake demands equal the 

pre-earthquake demands. Therefore, the changes in 

network performance after an earthquake are only 

due to the structural damage to bridges. The damage 

states of the bridges are computed considering only 

the ground-motion hazard (i.e., other possible dam-

age mechanisms such as liquefaction are not consi-

dered). The bridge fragility curves provided by HA-

ZUS (1999) are used to estimate the probability of a 

bridge being in a particular damage state (no dam-

age, minor damage etc.) based on the simulated 

ground-motion intensity at the bridge site. These 

damage state probabilities are then used to simulate 

the damage state of the bridge following the earth-

quake. Damaged bridges result in reduced capacities 

and increased free-flow travel times in the links in 

which the bridges are part of. The capacity reduction 

and the increase in travel times due to bridge damage 

were obtained based on Shiraki et al. (2007).  

Ideally, each bridge should be considered as part 

of a separate link, though in practice this could be-

come cumbersome. In particular, aggregated net-

works can have up to 10 bridges in a single link, and 

in such cases, the link damages need to be related to 

the damage to all the bridges present in the link. As a 

simplification, the current work assumes that the 

link capacity reduction equals the average of the ca-

pacity reductions attributable to each bridge in the 

link. A similar approach is used to estimate the in-

crease in the link free-flow travel time. The post-

earthquake network performance is then computed 

using the new network characteristics (i.e., the user-

equilibrium problem is solved using the new set of 

free-flow travel times and capacities in order to ob-

tain the link flows), and a new estimate of the total 

travel time in the network is obtained. It is to be 

noted that the current work estimates the perfor-

mance of the network only immediately after an 

earthquake. The changes in the performance with 

network component restorations are not considered 

here for simplicity. 

4 RESULTS AND DISCUSSION 

This section discusses the San Francisco bay area 

transportation network risk estimates obtained using 

the proposed IS framework. The IS framework re-

quires that the parameters of the sampling distribu-

tion for the magnitude and the residuals (described 

in Section 2) be chosen optimally in order to obtain 



reliable results efficiently. The set of parameters in-

cludes λ  (Equation 4) for magnitudes, the mean-
shift for inter-event residuals (msinter) and the mean-

shift for intra-event residuals (msintra). 

The value of λ  was fixed at 1.0 since it produced 
a desirable earthquake magnitude histogram with a 

sufficient number of large magnitude events. The 

value of msinter can be fixed similarly, by viewing the 

histogram of the sampled residuals. In this study, 

msinter was chosen as 1.0. Choosing an optimal value 

of msintra is slightly more difficult since msintra af-

fects the joint distribution of a set of intra-event re-

siduals, and hence, is not easy to visualize. The first 

step in fixing the value of msintra is to note that the 

optimal value depends predominantly on three fac-

tors, namely, the extent of spatial correlations 

(measured by the range parameter in Equation 5), the 

average site-to-site separation distance and the num-

ber of sites of interest. As mentioned previously, 

large mean-shifts will result in inefficiency due to 

the simulation of many improbable ground-motion 

fields (ground-motion values more extreme than the 

domain of interest). If sites are close to one another 

and if the spatial correlations are significant, the cor-

relations between the residuals will permit a larger 

mean-shift as it is reasonably likely to observe joint-

ly large values of positively-correlated random va-

riables. Similarly, the presence of fewer sites permits 

larger mean-shifts since it is more likely to observe 

jointly large values of residuals over a few sites than 

over a large number of sites. Hence, in this study, it 

is intended to determine optimal mean-shifts as a 

function of average site-to-site separation distances 

normalized by the range and the number of sites. 

This is done by simulating the intra-event residuals 

over several fields that contain a varying number of 

sites with varying average site separation distances, 

considering several feasible mean-shifts for each 

field. The feasibility of the resulting residuals (i.e., 

whether the simulated set of residuals is reasonably 

probable) is then studied, and the optimal mean-

shifts were determined for each case based on the re-

sults. These optimal mean-shifts have been plotted 

as a function of the number of sites and the average 

site separation distance/ range in Figure 3. In the cur-

rent work, for the aggregated bay area network in 

consideration, the value of msintra was fixed at 0.3. 

In this paper, the lifeline risk estimates are pre-

sented in the form of an exceedence curve, which 

shows the recurrence rates of various possible post-

earthquake total travel times. Figure 4a shows the 

exceedence curve (risk curve) for total travel times 

obtained using the IS framework. This risk curve is 

obtained by sampling 25 magnitude-rupture location 

pairs and 50 sets of inter and intra-event residuals 

for each magnitude-location pair.  

It is important to validate the risk curve shown in 

Figure 4a in order to ensure the effectiveness of the 

proposed IS framework. In order to do so, a risk 

curve is also estimated using the benchmark method, 

namely, MCS, and is compared to that obtained us-

ing IS. Strictly, the benchmark approach should use 

MCS to sample the catalog of earthquakes (i.e., 

magnitudes and rupture locations) and the ground-

motion residuals. Experience indicates, however, 

that reliable risk estimates can only be obtained us-

Figure 3: Optimal mean-shift, msintra, as a function of the 
average number of sites and the average site to site distance 

Figure 4: (a) Total travel time exceedence curves (b) Coefficient of variation of the risk estimates 
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ing approximately a million ground-motion maps 

generated using this approach. This is computation-

ally prohibitive and hence, the benchmark approach 

used in the current study uses IS for generating the 

magnitudes but MCS for the residuals. This is rea-

sonable because the IS of a single random variable 

(magnitude in this case) has been shown to be effec-

tive in a wide variety of applications. In fact, Kire-

midjian et al. (2003) use IS in place of MCS for ge-

nerating magnitudes as well. Further applications of 

IS can be found in areas such as structural reliability 

(Melchers, 1999). On the other hand, the simulation 

procedure for intra-event residuals involves IS of a 

correlated vector of random variables, and hence, is 

the focus of the validation study described in this 

section. 

Figure 4a shows the exceedence curve obtained 

using IS for generating magnitudes (25 magnitude-

rupture location pairs) and MCS for generating inter 

and intra-event residuals (500 sets per magnitude-

location pair). As seen from the figure, the risk 

curves obtained using the IS framework closely 

matches that obtained using the benchmark method, 

thereby indicating the accuracy of the results ob-

tained using IS. This is further substantiated by Fig-

ure 4b, which plots the coefficient of variation 

(CoV) of the risk estimates obtained using the IS ap-

proach and the benchmark approach. It can be seen 

from the figure that the CoV values corresponding to 

large travel times are smaller when IS is used, even 

though the IS uses one-tenth the number of simula-

tions required by the benchmark method. Further, it 

was also seen that using IS in the place of MCS for 

simulating magnitudes typically reduces the compu-

tational complexity by a factor of 10, and hence, the 

overall IS framework reduces the CPU time for the 

risk assessment by a factor of nearly 100.  

Finally, in this study, it is also intended to demon-

strate the importance of considering spatial correla-

tion while assessing lifeline risk. Hence, the trans-

portation network risk assessment was repeated as-

suming uncorrelated intra-event residuals, and a new 

exceedence curve was obtained (Fig. 5). It can be 

seen that the risk is considerably underestimated 

when the spatial correlations are ignored. Further, 

some past risk assessments in the literature have 

completely ignored the aleatory uncertainty in the re-

siduals (i.e., median ground-motion fields are as-

sumed, and inter- and intra-event residuals are ig-

nored). A risk assessment carried out this way (Fig. 

5) shows that the risk is even more substantially un-

derestimated in this case. Such simplifications clear-

ly introduce significant errors into the risk calcula-

tions, and should thus be avoided. 

5 CONCLUSIONS 

An efficient simulation-based framework based on 

importance sampling (IS) has been proposed in this 

study that can be used for the seismic risk assess-

ment of lifelines. The risk assessment procedure in-

volves preferentially sampling ‘important’ ground-

motion fields, and evaluating the lifeline perfor-

mance considering the simulated fields. Important 

ground-motion fields are generated by preferentially 

sampling large magnitude earthquakes and above-

average ground motions corresponding to these 

earthquakes. The study proposed IS density func-

tions that can be used for such preferential sampling, 

and also suggested techniques that can be used to es-

timate the parameters of these sampling densities. 

The proposed IS framework was used to evaluate 

the seismic risk of an aggregated form of the San 

Francisco bay area transportation network. Simpli-

fied transportation network analysis models were 

used to illustrate the feasibility of the proposed 

framework. The study showed that the risk estimates 

obtained using IS match those obtained using the 

benchmark method, namely, conventional Monte 

Carlo simulation (MCS). It was also shown that the 

number of required IS realizations is roughly one-

hundredth the number of required MCS realizations 

for obtaining equally reliable risk estimates. Finally, 

the study showed that the uncertainties in the 

ground-motions and the spatial correlations between 

ground-motion intensities at multiple sites must be 

modeled in order to avoid introducing significant er-

rors into the lifeline risk calculations. 
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